BEAM SCREEN ISSUES
(with 20 T dipole magnets instead of 8.3 T)

- Introduction and current LHC beam screen
- Magneto-Resistance (MR)
 - What was done in the past (approx. of the approx. Kohler’s rule)
 - Exact and approximate Kohler’s rules
- Anomalous Skin Effect (ASE)
 - Approximate formula used in the past
 - Exact formula from Reuter & Sondheimer
- Conclusions and outlook
- PS: Important issue of Synchrotron Radiation (SR) not discussed, even if the power would be increased by ~ 30 and the critical photon energy by ~ 13
In the LHC:
- ~ 90% (beam screen) between 5 and 20K
- ~ 10% at room temperature (2 mm thick copper beam pipe)

Main purpose of the beam screen: Shield the cold bore from SR
=> Made of SS to resist to mechanical stresses

Cu coating to keep the resistance as low as possible
- Transverse resistive-wall instability (low-frequency phenomenon, from a few kHz to a few MHz) => MR important
- Power loss is a different issue due to the short bunch length + ASE + surface roughness (both important at high frequencies)

Drawback from Cu coating: Eddy currents mainly in the Cu layer when quenches => The smaller the copper coating thickness the better for the quench force (which deforms the beam screen horizontally)

Other impedance issues: pumping slots (for the vacuum) + weld
Saw teeth in the arcs on Cu (a series of ~ 30-40 μm high steps spaced by ~ 500 μm in the long. direction, to reduce the forward reflectivity)

In dipoles, also called baffles, to avoid direct e- path along magnetic field lines to the cold bore (which would then add to the heat load)

LHC design as it is built and installed

Weld

~ 40 μm

~ 500 μm
Power loss from the image currents in the beam screen (neglecting the holes) at 7 TeV => It was checked by N. Mounet that the same numerical result is obtained with our more precise multi-layer impedance formula

\[P_{loss/m}^{G,RW,1layer} = \frac{1}{2\pi R} \Gamma \left(\frac{3}{4} \right) \frac{M}{b} \left(\frac{N_b e}{2 \pi} \right)^2 \sqrt{\frac{c \rho Z_0}{2}} \sigma_t^{-3/2} \approx 85 \text{ mW/m} \]

\[\Gamma \left(\frac{3}{4} \right) = 1.23 \]

\[M = \text{number of bunches} = 2808 \]

\[b = \text{beam screen half height} = 36.8 / 2 = 18.4 \text{ mm} \]

\[N_b = 1.15 \times 10^{11} \text{ p/b} \quad \sigma_t = 0.25 \text{ ns} \]

\[\rho_{Cu}^{20K} = 5.5 \times 10^{-10} \Omega \text{m} \]

LHC circumference = \(L = 2\pi R = 26658.883 \text{ m} \)

\[Z_{ll}^{RW0} (\omega) = \left(1 + j\frac{L}{2\pi b} \sqrt{\frac{\omega \rho Z_0}{2c}} \right) \]
Power loss from the image currents due to the weld

\[
\rho_{\text{Cu}}^{20K} = 5.5 \times 10^{-10} \, \text{Ωm} \quad \rho_{\text{SS}}^{20K} = 6 \times 10^{-7} \, \text{Ωm}
\]

\[
\frac{\Delta l_{\text{Weld}}}{2 \pi b} = \frac{2}{2 \pi \times 18.4} = \frac{1}{\pi \times 18.4} \approx \frac{1}{60}
\]

\[
P_{\text{Weld}}^{\text{loss/m}} \approx P_{\text{G,RW,1layer}}^{\text{loss/m}} \times \sqrt{\frac{\rho_{\text{SS}}^{20K}}{\rho_{\text{Cu}}^{20K}}} \times \frac{\Delta l_{\text{Weld}}}{2 \pi b} \approx 48 \, \text{mW/m}
\]

\[
\frac{P_{\text{Weld}}^{\text{loss/m}}}{P_{\text{G,RW,1layer}}^{\text{loss/m}}} \approx 57 \%
\]

Even though the weld corresponds to only \(\sim 1/60\) of the surface, the power loss due to the weld is not negligible.
Comparison between what I re-"estimated" and what is in the LHC Design Report, Vol. 1, Chap. 5 (https://edms.cern.ch/file/445833/5/Vol_1_Chapter_5.pdf) => For 1 single beam

~ 85 mW/m (with the same formula as F. Ruggiero in his paper CERN SL/95-09 (AP)), i.e. without ASE (which gives an increase of ~ 11%). Mostacci found ~ 80 mW/m (with simulations). The value quoted comes from meas.

Table 5.7: Summary of heat load on the arc beam screen for nominal LHC beam at 7 TeV. The three columns give the source, the latest relevant reference, and the peak heat load in mW/m.

<table>
<thead>
<tr>
<th>source</th>
<th>Ref.</th>
<th>Peak power [mW/m] at 7 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchrotron Radiation</td>
<td>[48]</td>
<td>220</td>
</tr>
<tr>
<td>Ohmic Losses</td>
<td>[52]</td>
<td>110</td>
</tr>
<tr>
<td>Pumping Slots</td>
<td>[53]</td>
<td>10</td>
</tr>
<tr>
<td>Welds</td>
<td>[2]</td>
<td>10</td>
</tr>
</tbody>
</table>

~ 1 mW/m for the most critical pumping holes in the arc beam screen (very close to Mostacci’s result) => See Appendices

~ 47 mW/m. Mostacci found 27 mW/m
Transverse resistive-wall impedance

\[Z_{\perp RW1} (\omega) = \left(1 + j \right) \frac{L Z_0}{\pi b^3} \sqrt{\frac{\rho}{2 \mu_0 \omega}} \]

- In the next slides, the transverse coupled-bunch instabilities were studied with the exact dimensions of all the beam screens and the correct transverse betatron functions.
ΔQ_x = -6.7E-4 – j × 4.1E-5

Beam screen contributes only ~ 1% of the real tune shift and ~ 50% of the imaginary part (i.e. of the rise-time)

Reminder: - Im (ΔQ) / 10^{-4} = 1 => Rise time ≈ 1600 turns ≈ 140 ms. According to W. Hofle the transverse feedback can damp up to ~ 20 – 40 turns
How were the values of the Cu resistivity at low B and high B for the current beam screen obtained?

In the paper “Surface Resistance Measurements and Estimate of the Beam-Induced Resistive Wall Heating of the LHC Dipole Beam Screen” (LHC Project Report 307, 1999) by F. Caspers et al., the following formula was used (referred to as “Kohler’s law”)

\[
\frac{\rho(B, T) - \rho_0(T)}{\rho_0(T)} = \frac{\Delta \rho}{\rho_0} = 10^{-2.69} \times (B \times RRR)^{1.055}
\]

\[\begin{align*}
B & = \text{Magnetic induction in Tesla} \\
T & = \text{Temperature in Kelvin} \\
\rho_0(T) & = \text{Resistivity at temperature T, without B} \\
R & = \rho \frac{l}{S} \Rightarrow \frac{\Delta R}{R_0} = \frac{\Delta \rho}{\rho_0}
\end{align*}\]

\[RRR \text{ (Residual Resistivity Ratio) is a measure of purity}\]

\[RRR = \frac{R(273 \text{ K})}{R(4 \text{ K})}\]
As the resistivity decreases with temperature towards a minimum (determined by purity), the RRR is defined as the ratio of the DC resistivity at room temperature to its cold-DC lower limit.

(See for instance the “Handbook of Accelerator Physics and Engineering”, 2nd Printing, Edited by A.W. Chao and M. Tigner, p. 368)

Assuming

\[\rho_0(20 \text{ K}) = 1.55 \times 10^{-10} \Omega \text{m} \]

\[RRR = 100 \]

\[\Rightarrow \rho(0.535 \text{ T}, 20 \text{ K}) \approx 1.8 \times 10^{-10} \Omega \text{m} \]

\[\rho(8.33 \text{ T}, 20 \text{ K}) \approx 5.5 \times 10^{-10} \Omega \text{m} \]

Using the same formula, yields for 20 T:

\[\rho(20 \text{ T}, 20 \text{ K}) \approx 11.2 \times 10^{-10} \Omega \text{m} \]
MAGNETO-RESISTANCE (3/13)

- Plot of the approximate formula (of the approximate Kohler’s rule)

\[x = B \ [T] \ast RRR \]

<table>
<thead>
<tr>
<th>B (T)</th>
<th>(x)</th>
<th>(\Delta \rho / \rho_0 \approx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.535</td>
<td>53.5</td>
<td>0.14</td>
</tr>
<tr>
<td>8.33</td>
<td>833</td>
<td>2.5</td>
</tr>
<tr>
<td>20</td>
<td>2000</td>
<td>6.2</td>
</tr>
</tbody>
</table>
Reminder on Kohler’s rule (See “Kohler’s rule and relaxation rates in high-Tc superconductors” by Nie Luo and G.H. Miley, Physica C 371 (2002) 259-269)

- It is shown in this paper that care must be exercised when applying Kohler’s rule to the magnetoresistance of some conductors (including high Tc-superconductors), where the density of charge carriers might change with temperature.

- Kohler’s rule may take 2 forms:
 - One exact
 - One approximate

- EXACT Kohler’s rule

If there is only 1 relaxation rate in the transport process of a certain conductor =>

\[
\frac{\Delta \rho}{\rho_0} = F(H, \tau)
\]

Function given only by the intrinsic electronic structure and external geometry of the conductor.

Resistivity when \(H = 0 \) \quad Magnetic field \quad Relaxation rate (or time)
APPROXIMATE Kohler’s rule

- Reminder on the link between relaxation time and DC resistivity under 0 magnetic field ⇒ Use Ohm’s law for a wire carrying the current density \(\vec{J} \) to get the resistivity in terms of the relaxation time.

Equation of motion for 1 e⁻:

\[
m \frac{d \vec{v}}{dt} = -e \, \vec{E} - \alpha \, \vec{v}
\]

\[
\alpha = \frac{m}{\tau}
\]

Permanent regime (DC):

\[
\frac{d \vec{v}}{dt} = 0
\]

\[
\vec{J} = -N \, e \, \vec{v} = \sigma_{DC} \, \vec{E}
\]

\[
\sigma_{DC} = \frac{N \, e^2}{\alpha}
\]

Density of carriers or

\[
\rho_0 = \frac{1}{\sigma_{DC}} = \frac{m}{N \, e^2 \, \tau}
\]
MAGNETO-RESISTANCE (6/13)

- The exact Kohler’s rule can then be re-written

\[\frac{\Delta \rho}{\rho_0} = F \left(\frac{H}{\rho_0} \times \frac{m}{N e^2} \right) \]

- IF the factor \(\frac{m}{N e^2} \) does not change with temperature, then Kohler’s rule can be simplified to

\[\frac{\Delta \rho}{\rho_0} = F \left(\frac{B}{\rho_0} \right) \quad B = \mu_0 H \]

Most of the problem comes from \(N \) which could be very sensitive to \(T \) in various conductors…

Kohler’s rule in its approximate but often used form
MAGNETO-RESISTANCE (7/13)

\[RRR = \frac{R(273 \text{ K})}{R(T)} = \frac{\rho_0(273 \text{ K})}{\rho_0(T)} \]

\[\rho_0 = \rho_0(T) \propto \frac{1}{RRR} \]

\[\frac{\Delta \rho}{\rho_0} = F(B \times RRR) \]

This is the form of Kohler's law used for instance in the "Handbook of Accelerator Physics and Engineering", 2nd Printing, Edited by A.W. Chao and M. Tigner, p. 368

In Tesla

~ the approximated formula used in the past
MAGNETO-RESISTANCE (8/13)

- Al is one of the few materials which deviates from Kohler’s rule (see “Beam Vacuum Chamber Effects in the CERN Large Hadron Collider” by L. Vos, 1985)
Experimental observations => Always an increase in resistance when increasing magnetic field:

- For small B fields => \(\rho \propto B^2 \)
- For very high B fields => \(\rho \propto B \)

Why an increase in resistance?
MAGNETO-RESISTANCE (10/13)

- MEAN FREE PATH:
 - The mean free path λ of a particle is the average distance covered by a particle (photon, atom or molecule) between successive impacts: $\lambda = v \tau$. As $\rho_0 = \frac{m}{N e^2 \tau}$, this leads to $\lambda = \frac{m v}{e^2 N \rho_0}$.

- CYCLOTRON RADIUS and FREQUENCY:
 - A particle, with a constant energy, describes a circle in equilibrium between the centripetal magnetic force and the centrifugal force:

 \[
 \frac{m v^2}{r} = e v B
 \]

 \Rightarrow

 \[
 r = \frac{m v}{e B}
 \]

 and

 \[
 \omega = \frac{v}{r} = \frac{e B}{m}
 \]

 \Rightarrow

 \[
 B \propto \frac{\lambda}{\rho_0 r}
 \]
MAGNETO-RESISTANCE (11/13)

For small B fields

\[\lambda(H) = r \sin \theta = r \sin \left(\frac{\lambda(0)}{r} \right) \]

\[\sin(x) \approx x - \frac{x^3}{3!} \]

A smaller \(\lambda \) means a larger \(\rho \)!

\[\frac{\Delta \rho}{\rho_0} = - \frac{\Delta \lambda}{\lambda_0} \propto \left[\frac{\lambda(0)}{r} \right]^2 \propto \left[\frac{B}{\rho_0} \right]^2 \]
Electrical measurements of beam screen wall samples in magnetic fields were performed in the past (see for instance EDMS # 329882 by C. Rathjen):

- Meas. showed that the trend line slopes of the voltage for all samples are always higher (around 20%) than the theoretical curves

Graph: dR/R vs. RRR*B for samples 2, 3 and 4:

In this graph appears the theoretical curve of dR/R vs. RRR*B for OFE copper, found in Outokumpu copper literature (Kohler).
Meas. confirmed the assumption of a heterogeneous RRR in the co-laminated copper layer => Cu close to the steel gets contaminated during the fabrication process such that the surface impedance is increased. The increase of the resistance has been compensated by increasing the thickness of the copper layer from 50 to 75 microm.
The ASE theory attributes the anomalous increase of surface resistance of metals at low temperatures and high frequencies to the long mean free path λ of the conduction $e^- \Rightarrow$ When the skin depth δ becomes much smaller than the mean free path λ, only a fraction of the conduction e^- moving almost parallel to the metal surface is effective in carrying current and the classical theory breaks down.

Some measurements were performed (see “Surface Resistance Measurements of LHC Dipole Beam Screen Samples, F. Caspers et al., EPAC2000), which were in relatively good agreement with predictions.
Reminder on the Normal Skin Effect (NSE): skin depth and surface resistance

\[\delta = \sqrt{\frac{2 \rho}{\omega \mu_0}} \]

\[R_s^{NSE} = \frac{\rho}{\delta} = \sqrt{\frac{\omega \mu_0 \rho}{2}} \]

Approximate formula for the surface resistance with ASE used in the past (See “Anomalous Skin Effect and Resistive Wall Heating”, W. Chou and F. Ruggiero, LHC Project Note 2 (SL/AP), when \(\alpha \geq 3 \))

\[R_s^{ASE} = R_\infty \left(1 + 1.157 \alpha^{-0.276} \right) \]

\[\alpha = \frac{3}{2} \left(\frac{\lambda}{\delta} \right)^2 = \frac{3 \omega \mu_0}{4 \rho^3} \left(\frac{\rho \lambda}{\omega \mu_0} \right)^2 \]

\[\rho \lambda = \frac{m v}{e^2 N} = \text{characteristic of the metal} \]

\[= 6.6 \times 10^{-16} \Omega m^2 \text{ for copper} \]

\[R_\infty = \left[\frac{\sqrt{3}}{16 \pi} \times \rho \lambda \times \left(\omega \mu_0 \right)^2 \right]^{1/3} \]

\[= 1.123 \times 10^{-3} \Omega \times \left(\frac{f}{\text{GHz}} \right)^{2/3} \]
ANOMALOUS SKIN EFFECT (3/8)

- Relative increase of the heating power

\[
\frac{P_{\text{ASE}}}{P_{\text{NSE}}} = \frac{\int_{\omega=0}^{\omega=+\infty} d\omega \, R_s^{\text{ASE}}(\omega) e^{-\left(\frac{\omega \sigma_z}{c}\right)^2}}{\int_{\omega=0}^{\omega=+\infty} d\omega \, R_s^{\text{NSE}}(\omega) e^{-\left(\frac{\omega \sigma_z}{c}\right)^2}}
\]

\[
\sigma_z = 7.5 \text{ cm}
\]

\[
\rho = 1.8 \times 10^{-10} \Omega m (450 \text{ GeV/c}) \Rightarrow \frac{P_{\text{ASE}}}{P_{\text{NSE}}} \approx 1.46 \quad \text{, i.e. increase of } \sim 46\%
\]

\[
\rho = 5.5 \times 10^{-10} \Omega m (8.33 \text{ T}) \Rightarrow \frac{P_{\text{ASE}}}{P_{\text{NSE}}} \approx 1.11 \quad \text{, i.e. increase of } \sim 11\%
\]

\[
\rho = 11.2 \times 10^{-10} \Omega m (20 \text{ T}) \Rightarrow \frac{P_{\text{ASE}}}{P_{\text{NSE}}} \approx 1.04 \quad \text{, i.e. increase of } \sim 4\%
\]
\[\rho = 1.8 \times 10^{-10} \text{ } \Omega \text{m} \text{ (450 GeV/c)} \]

\[\frac{P_{ASE}}{P_{NSE}} \approx 1.46 \]
\[\rho = 5.5 \times 10^{-10} \, \Omega \text{m} \text{ (8.33 T)} \]

\[R_s^{\text{ASE}} \]

\[R_s^{\text{NSE}} \]

\[\frac{P_{\text{ASE}}}{P_{\text{NSE}}} \approx 1.11 \]
\[\rho = 11.2 \times 10^{-10} \, \Omega \text{m} \, (20 \, \text{T}) \]
Sergio Calatroni implemented the exact (full) formula from “The theory of the anomalous skin effect in metals” by G.E.H. Reuter and E.H. Sondheimer, Proc. Royal Society (London), A195, 336 (1948) => For the specular reflection of the e^-

Frequency = 1 GHz, copper at various temperatures

Plotted from the Mathematica Notebook of Sergio Calatroni

$R_s^{\text{ASE, exact}}$

$R_s^{\text{ASE, approximated}}$

R_s^{NSE}

$R_s^{\text{limit}} = R_\infty$

R_s
ANOMALOUS SKIN EFFECT (8/8)

\[\log_{10}\left[10, R_s^{\text{ASE, exact}}\right] \]

\[\log_{10}\left[10, R_s^{\text{NSE}}\right] \]

Plotted from the Mathematica Notebook of Sergio Calatroni
In the LHC at 20 T, we are dominated by the magnetic field and we can neglect the rest! => The resisivity at top energy will increase from ~ 5.5E-10 Ωm (at 7 TeV) to ~ 11.2E-10 Ωm (at 16.5 TeV), i.e. by a factor ~2

The longitudinal and transverse impedances are
=> They are \[\sqrt{2} \approx 1.4 \] times larger

The total (ohmic losses + pumping slots + welds) present power loss is ~ 150 mW/m for 1 beam at 7 TeV/c => At 16.5 TeV/c, it would be ~ 175 mW/m

Other impedance issues: Collimators, whose gaps will be smaller and the TMCI might be critical! Reminder: At 7 TeV/c, the TMCI intensity threshold is estimated at (only) ~ 2 times the ultimate intensity…
APPENDICES
Arc beam screens:
Inner dimension between flats: 36.8 mm
Inner dimension between radii: 46.4 mm
SS thickness: 1.0 mm
Cu thickness: 0.075 mm

LSS beam screens:
Inner dimension between flats: varying from 37.6 until 61.0 mm
Inner dimension between radii: varying from 47.2 until 70.7 mm
SS thickness: 0.6 mm
Cu thickness: 0.075 mm

Courtesy of N. Kos
CURRENT LHC BEAM SCREEN (2/6)

Bunch charge (for nominal)

\[Q = e \times 1.15 \times 10^{11} = 18.4 \text{ nC} \]

Rms bunch length

\[\sigma_z = 7.5 \text{ cm} \]

Bunch spacing

\[S_b = 7.5 \text{ m} \]

Cold bore inner radius

\[d = 2.5 \text{ cm} \]

Low temp resistance SS:

\[7E-7/1.2 = 6E-7 \text{ ohm.m} \]

RRR SS:

1.2

RRR Cu (co-laminated surface):

100

Low temp Cu resistance:

\[2E-8/100 = 2E-10 \text{ ohm.m} \]

In contrast to pure metals, the resistivity of alloys does not decrease much at low temperature.

Covered surface from the holes

- **In the arcs:** \(f = 4.0\% \)
- **In the LSS:** \(f = \) from 1.8\% to 2.6\% (depends on screen \(\Phi \))

Without magnetic field. In the past, we used \(1.8E-10 \Omega \text{m} \) at low \(B \) and \(5.5E-10 \Omega \text{m} \) at high \(B \) (due to magneto-resistance effect).

- **Resistivity at room temp:** 7E-7 ohm.m
- **RRR of SS:** 1.2

Resistivity of Copper

- **Resistivity at room temp:** 2E-8 ohm.m
- **RRR of Cu (co-laminated surface):** 100

Resistivity at low temp

- **Cu resistance:** 2E-8/100 = 2E-10 ohm.m

Covered surface from the holes

- **In the arcs:** \(f = 4.0\% \)
- **In the LSS:** \(f = \) from 1.8\% to 2.6\% (depends on screen \(\Phi \))
The power loss goes with the square of the bunch charge => It is ~ 2 times more for the ultimate bunch (1.7E11 p/b) compared to the nominal one (1.15E11 p/b)

Power loss

Table 10: Summary of parasitic losses for LHC at 7 TeV.

<table>
<thead>
<tr>
<th>Power loss [kW]</th>
<th>FOR A SINGLE BEAM</th>
<th>Power loss per unit length [mW/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.67</td>
<td>Incoherent synchrotron radiation</td>
<td>216</td>
</tr>
<tr>
<td><= 0.54</td>
<td>Coherent synchrotron radiation</td>
<td><= 32</td>
</tr>
<tr>
<td>1.97</td>
<td>Resistive wall (20° K)</td>
<td>74</td>
</tr>
<tr>
<td>0.27</td>
<td>Welds</td>
<td>10</td>
</tr>
<tr>
<td>0.26</td>
<td>Pumping slots</td>
<td>10</td>
</tr>
<tr>
<td>< 0.80</td>
<td>Shielded bellows</td>
<td>< 30</td>
</tr>
<tr>
<td><= 1.03</td>
<td>Leaks in bellows gaps</td>
<td><= 38</td>
</tr>
<tr>
<td>8.54</td>
<td>TOTAL</td>
<td>410</td>
</tr>
</tbody>
</table>
CURRENT LHC BEAM SCREEN (4/6)

- Using A. Mostacci’s Mathematica Notebook (wwwslap.cern.ch/collective/mostacci/slots/note/slots.nb), and updating the numerical values (only small changes), these curves were produced (curves of constant power in mW/m vs. the beam screen thickness T and the width of the slots W)

\[b_{\text{arcs}} = \frac{36.8}{2} = 18.4 \text{ mm} \]

\[b_{LSS} = \frac{37.6}{2} = 18.8 \text{ mm} \]

and \(f = 2.6\% \) (most critical case)
The current parameters of the beam screen are

- Length of the slots: $L = 6, 7, 8, 9$ and 10 mm \Rightarrow $L_{\text{average}} = 8$ mm
- Width of the slots:
 - In the arcs: $W = 1.5$ mm
 - In the LSS: $W = 1.0$ mm
- Beam screen thickness:
 - In the arcs: $T = 1$ mm SS + 0.075 mm Cu = 1.075 mm
 - In the LSS: $T = 0.6$ mm SS + 0.075 mm Cu = 0.675 mm

\Rightarrow Power loss from the holes in the arcs: $P_{\text{arcs}} \approx 1.1$ mW/m
Power loss from the holes in the LSS: $P_{\text{LSS}} \approx 0.1$ mW/m
Sacherer vertical tune shifts for all the coupled–bunch modes and m=0
(nominal LHC impedance model at 7000GeV)

ΔQ_y = -6.0E-4 – j × 3.5E-5

Beam screen contributes only ~ 1% of the real tune shift and ~ 50% of the imaginary part (i.e. of the rise-time)

Courtesy of N. Mounet